Because we offer excellent teaching, in a world-class environment, with exceptional opportunities for an experience you will always remember.

THE UQ ADVANTAGE

CHOICE OF PROGRAMS
UQ has the most comprehensive range of high-quality programs in Queensland, with 350+ programs and more than 4000 courses offered at undergraduate and postgraduate levels. You can also undertake an undergraduate (concurrent) diploma in languages, global issues or music performance at the same time as you are completing your bachelor degree.

SUCCESSFUL GRADUATES
UQ has a tradition of leadership in all spheres of society, both here and overseas: we include a Nobel Laureate, an Oscar winner, two Governors-General, several governors, scores of politicians and Olympic athletes, and countless businesspeople, researchers, and inventors among our graduates.

EXCELLENT TEACHERS
UQ has won more national teaching awards than any other university in the country. The University has more than 2700 highly-qualified academic staff dedicated to teaching and research, many of whom are recognised internationally as leaders in their fields.

LEADING RESEARCH
With eight research institutes on-site, UQ is one of the country’s top three research universities across many measures, including annual PhD graduations, commercialisation of discoveries, industry collaboration, Excellence in Research for Australia survey results, and funds received from both government and the private sector.
INTERNATIONAL REPUTATION

UQ is in the top 100 of all universities worldwide, as measured through a combination of three key global university rankings – Times Higher Education, Shanghai Jiao Tong, and QS World University. UQ is also one of only three Australian members of Universitas 21, a select international network of comprehensive, research-intensive universities.

GREAT CAREERS

UQ qualifications are highly regarded by Australian and international employers, and the employment rate and starting salary for UQ graduates is considerably higher than the national average. The multitude of programs reflects the diversity of career opportunities available to graduates, and the industry links ensure success.

TOP FACILITIES

UQ is constantly upgrading its teaching facilities to meet the needs of both students and industry. We have an active building program, one of the world’s fastest information networks, one of the country’s best research libraries, and modern teaching spaces that enable the use of the latest technology.

CAMPUS LIFESTYLE

You will enjoy the sense of community that pervades UQ’s cosmopolitan campuses at St Lucia, Ipswich, Gatton and Herston. The campuses are renowned as being among the most beautiful and well-equipped in Australia, and offer excellent sporting and cultural facilities plus a broad range of social activities.

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UQ Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Why choose engineering?</td>
<td>3</td>
</tr>
<tr>
<td>The UQ engineering experience</td>
<td>4</td>
</tr>
<tr>
<td>Profile – French double degree</td>
<td>6</td>
</tr>
<tr>
<td>International opportunities</td>
<td>7</td>
</tr>
<tr>
<td>ACADEMIC PROGRAMS</td>
<td></td>
</tr>
<tr>
<td>BACHELOR OF ENGINEERING</td>
<td>8</td>
</tr>
<tr>
<td>Integrated BE/ME</td>
<td>10</td>
</tr>
<tr>
<td>Chemical</td>
<td>12</td>
</tr>
<tr>
<td>Chemical and biological</td>
<td>12</td>
</tr>
<tr>
<td>Chemical and environmental</td>
<td>13</td>
</tr>
<tr>
<td>Chemical and materials</td>
<td>13</td>
</tr>
<tr>
<td>Chemical and metallurgical</td>
<td>14</td>
</tr>
<tr>
<td>Civil</td>
<td>15</td>
</tr>
<tr>
<td>Civil and environmental</td>
<td>15</td>
</tr>
<tr>
<td>Civil and geotechnical</td>
<td>16</td>
</tr>
<tr>
<td>Electrical</td>
<td>17</td>
</tr>
<tr>
<td>Electrical and biomedical</td>
<td>17</td>
</tr>
<tr>
<td>Electrical and computer</td>
<td>18</td>
</tr>
<tr>
<td>Mechanical</td>
<td>19</td>
</tr>
<tr>
<td>Mechanical and materials</td>
<td>19</td>
</tr>
<tr>
<td>Mechanical and aerospace</td>
<td>20</td>
</tr>
<tr>
<td>Mechatronic</td>
<td>21</td>
</tr>
<tr>
<td>Mining</td>
<td>22</td>
</tr>
<tr>
<td>Mining and geotechnical</td>
<td>22</td>
</tr>
<tr>
<td>Software</td>
<td>23</td>
</tr>
<tr>
<td>Concurrent diplomas</td>
<td>24</td>
</tr>
<tr>
<td>Dual degree programs</td>
<td>25</td>
</tr>
<tr>
<td>Scholarships</td>
<td>26</td>
</tr>
<tr>
<td>RWH Hawken Scholars</td>
<td>27</td>
</tr>
<tr>
<td>Admission information</td>
<td>28</td>
</tr>
<tr>
<td>Money matters</td>
<td>29</td>
</tr>
<tr>
<td>What do we mean?</td>
<td>30</td>
</tr>
<tr>
<td>International students</td>
<td>31</td>
</tr>
<tr>
<td>Quick reference guide</td>
<td>32</td>
</tr>
</tbody>
</table>

Cover Image: Concept design of a scramjet engine in full flight.
Engineers create imaginative and visionary solutions to the challenges facing the planet to improve the world we live in.

THE ADVANCED ENGINEERING BUILDING

Opening in 2013, the Advanced Engineering Building (AEB) will provide students with a powerful and active environment for improved teaching and learning. This state-of-the-art facility will enhance The University of Queensland’s work to embed a research experience in undergraduate engineering studies, maximise global opportunities for students, and provide innovative spaces and blended learning laboratories.

The AEB will also be a unique facility designed to interact with the natural environment, dramatically reduce energy consumption, and create an interactive learning environment for students, as it will be instrumented and monitored in real-time, allowing interaction and experimentation on the features of the building by students. It will literally be a living laboratory.

The AEB will incorporate the state-of-the-art GHD Auditorium and multi-purpose, active learning spaces where lectures are integrated with laboratories that can be used for design, build and test purposes. These learning spaces will provide students with a powerful and active environment for improved teaching and learning.

CHALLENGE YOURSELF

The 21st century is an era of great global and local challenges. Climate change and clean energy, reliable water supplies, infrastructure for growing populations, sustainable resource development, and expanding information and communication advances are some of the many groundbreaking opportunities for a new generation of engineers.
WHY CHOOSE ENGINEERING?

The UQ Engineering advantage:

CAREER OPPORTUNITIES
Engineers enjoy diverse and challenging career opportunities in existing and new growth areas within research, development, design, manufacturing and operations that provide valuable products, processes and services. New materials, technologies and infrastructure are being developed all the time, creating a high demand for engineers.

CONTRIBUTE TO SOCIETY
A UQ Engineering degree is challenging. It provides a strong foundation in mathematics, science and engineering design, and prepares you with the knowledge and skills to make significant contributions to society and our community.

MORE OPTIONS
With the flexible first year and largest range of engineering specialisations in Queensland, UQ gives you exceptional opportunities in engineering. Introduced in 2012, you have the option to undertake an integrated masters program combining the Bachelor of Engineering with a Master of Engineering. See page 10 for further information.
UQ offers the largest choice of engineering specialisations, a wider range of quality resources, and access to more award-winning teachers and researchers than any other university in Queensland. Strong links with industry, research and government ensure our programs are industry relevant, providing you with exceptional opportunities for employment and a university experience like no other.

WIDEST RANGE OF SPECIALISATIONS
Our nationally and internationally accredited Bachelor of Engineering (BE) offers one of the largest range of engineering disciplines in Australia, some unique to Queensland such as Mining, and Chemical and Metallurgical Engineering. Access to continually modernised facilities and an interdisciplinary approach to learning provides you with the technical skills and knowledge to solve existing and emerging challenges facing society.

THE EMPLOYMENT EDGE
UQ Engineering graduates are in the top band of engineering starting salaries in Australia, and many graduates have gone on to senior positions within Australia and overseas, or postgraduate study. The reputation of UQ Engineering ensures our graduates are highly sought after by employers in industry and research institutions all over the world. A UQ Engineering degree gives you a strong foundation for a career in engineering. You will develop the necessary skills, technical knowledge and industry experience to begin a rewarding career in engineering.

CHALLENGING OPPORTUNITIES
As a UQ Engineering student, you can participate in international robotics competitions, national mechanical engineering competitions, biomedical and environmental engineering forums, mining games, and the Formula One style racing car competition where a group of students design, build and test a Formula SAE racing car. You also have the opportunity to join the UQ Chapter of Engineers Without Borders and contribute to engineering projects in developing communities. These are just some of the many advantages of being a UQ Engineering student.

FLEXIBLE FIRST YEAR
At UQ, the Engineering program is flexible. You can choose your BE specialisation in first year, or wait until second year. This allows you to keep your options open and gives you the opportunity to experience the many flavours of engineering before deciding on a specialisation.
SUPPORT FOR STUDENTS
First-year engineering students have exclusive access to the First Year Engineering Learning Centre, a social and learning resource equipped with the latest technologies. Other learning spaces are also available for later-year students throughout the engineering precinct.

Academic advisers and tutors are available throughout semester and our staff provide support and advice to new students from their first year of study. Advice on the sometimes difficult transition from high school to university, as well as assisting international students commencing study in Australia is also available. You can also participate in our First Year Mentoring Program where second-year engineering students pass on their knowledge and assist with the adjustment to university life.

ADAPTABLE PROGRAMS
The University of Queensland also offers a variety of dual programs in which you can study a Bachelor of Engineering with other disciplines including Biotechnology, Information Technology, Arts, Business Management, Commerce, Economics and Science. A more extensive list is featured on page 25.

EXCELLENCE IN TEACHING
UQ Engineering is internationally recognised for its world’s best practice in teaching and learning in undergraduate education. You will be taught by leading experts in their field ensuring programs are responsive to change and industry. Many of our staff have been recognised for their teaching and innovation, winning federal government and UQ Teaching Excellence awards including a Prime Minister’s Australian Award for Individual University Teacher of the Year. Innovative teaching methods include the Project Centred Curriculum applied in Chemical and Environmental Engineering majors, and other Australian award winning programs where students integrate project work sourced from industry and research partners into their program.

STUDENT SOCIETIES
UQ Engineering has some of the most active student groups on campus including many undergraduate engineering student societies. Student societies not only provide a voice for the engineering student community, but also bring engineering students together through social events and networking. They also provide opportunities to engage with industry – all of which serve to further enrich the engineering student experience.

PROFESSIONAL ACCREDITATION
Our Bachelor of Engineering program is accredited by the leading professional association, Engineers Australia. You will be eligible for membership of Engineers Australia upon graduation. Other memberships apply to specific engineering majors.

PRACTICAL INDUSTRY EXPERIENCE
The UQ Bachelor of Engineering provides you with practical experience through site visits, vacation work and industry placements. You can complete project work, on-site learning and work experience at real industry workplaces as a core component of your degree. Industry placements not only provide an authentic experience of professional practice, but also provide you with valuable opportunities to develop relationships for future employment.
FRENCH DOUBLE DEGREE

UQ – Écoles Centrales Double Degree

Study engineering at UQ and France and graduate with three degrees.

The UQ – École Centrale Double Degree Program offers UQ engineering students the opportunity to also study at one of the most prestigious engineering institutions in France with the possibility of graduating with three degrees: The UQ Bachelor of Engineering and Master of Engineering Science, and the French Diplôme d’Ingenieur.

Candidates for the Double Degree Program are selected in their first year from the top engineering students. The successful candidates undergo language and technical preparation, spend their third and fourth years at one of the five French Grandes Écoles Centrales (Lille, Lyon, Marseille, Nantes or Paris), and return to UQ to complete their Bachelor and Masters program (one to two years).

Upon completion of all the requirements of the Program, students graduate with a Diplôme d’Ingénieur from the French Grande École and a Bachelor of Engineering and Master of Engineering Science from UQ.

The Double Degree Program provides the opportunity to study engineering in France. Students learn from the French and Australian education approaches, are exposed to foreign culture, network with industry, and develop French language proficiency.

The five Écoles Centrales (Lille, Lyon, Marseille, Nantes and Paris) involved share a common ethic in educating general engineers to a high level for professional careers.

UQ Engineering student Maye Walraven (above right) at École Centrale, Paris
INTERNATIONAL OPPORTUNITIES

Studying in another country is a great way to learn about the world and broaden your horizons. UQ can help with costs and give you credit towards your degree.

UQ ABROAD

While at UQ, you can have the exciting experience of studying on exchange overseas for up to a year, while still gaining credit toward your UQ degree.

UQ Abroad is an ideal way to combine study and travel. Discover a new culture first-hand and improve your foreign language skills as you broaden your career and academic opportunities, establish a worldwide network of friends, and gain a different perspective on your studies.

Because UQ has many exchange agreements with other institutions, you will have the choice of more than 150 universities in 37 countries.

Under the exchange, tuition fees at the host university are waived. You continue to be enrolled and pay fees at UQ and are responsible for your own airfares, accommodation, personal insurance, and living costs: you can even apply for a UQ scholarship to help with costs.

If you would prefer a shorter international experience, take advantage of UQ’s many overseas placements, conferences, internships and voluntary work opportunities.

UQ Abroad

www.uq.edu.au/uqabroad
Email uqabroad@admin.uq.edu.au
Phone (07) 3365 9075 or (07) 3365 8832

LEARN A LANGUAGE

If you would like to learn a new language, you can enrol in an IML course while at UQ. No formal entry requirements are required and the program will not be counted towards your degree.

IML, the Institute of Modern Languages, is a centre within the Faculty of Arts at UQ St Lucia that offers courses in more than 25 languages, from Arabic to Vietnamese, at beginner to advanced levels. All four communication skill areas – listening, speaking, reading, and writing – are covered in small, friendly classes for an exciting cultural experience.

Institute of Modern Languages

www.iml.uq.edu.au
Email iml@uq.edu.au
Phone (07) 3346 8200
Can I study part-time?
While it is possible to study for a Bachelor of Engineering part-time, most classes are scheduled between 8am and 5pm weekdays. International students usually need to study full-time to enable them to complete their studies in accordance with their visa.

Can I transfer from another degree into engineering?
At UQ, you may be able to enter the Bachelor of Engineering program at a later date even if you do not meet all the initial entry requirements. You can enrol in some other UQ programs and undertake courses that are also available in the Bachelor of Engineering program while studying to meet the entry requirements or improve your entry score. For example, by selecting certain first-year courses as electives in the Bachelor of Information Technology, you can satisfy the entry prerequisites for the Bachelor of Engineering and, subject to satisfactory grades, proceed to the BE in your second year.

The UQ Bachelor of Engineering (BE) offers:
- Queensland’s largest choices of engineering study areas
- a flexible first year for students who haven’t decided and wish to defer choice of an engineering specialisation to second year
- excellent employment opportunities strengthened by UQ’s world-class reputation
- award-winning lecturers, degree programs and researchers
- hands-on experience and strong links to industry and world leading research
- advanced theoretical knowledge and practical skills to meet industry needs.

The Bachelor of Engineering program requires you to complete 64 units of study including a major in one of the 16 engineering specialisations described on the following pages

The program typically takes four years to complete based on the standard University full-time load of eight units (usually four courses) per semester.

The UQ Bachelor of Engineering equips you to work in both established and newly emerging areas of engineering. You will build your understanding by applying basic science and engineering principles to engineering problems of commercial and societal importance. In addition to technical expertise, the program emphasises essential workplace skills such as communication, teamwork, project management, critical thinking and problem-solving.

Can I study more than one degree?
Engineering students can enrol in a number of dual programs, where you can study two degrees at the same time.

Dual programs provide an opportunity to broaden your education and experience, and enhance the qualifications and skills you take into the employment market. For example, you can develop foreign language proficiency or expertise in computer science, mathematics or business.

For further information on UQ’s dual programs, please see page 25.
SPECIALISATIONS

The UQ Bachelor of Engineering program offers 16 specialisations (called majors, dual majors and extended majors) in engineering, along with a number of minors that can be added to broaden your area of specialty.

First Year Engineering

The first year of the Bachelor of Engineering provides you with a strong foundation in defined core engineering courses, and introduces you to the way professional engineers think and work.

A significant learning component of first year engineering is built around two engineering practice courses involving physical prototyping and modelling. Students work in teams on discipline-specific projects that can be scaled up and applied to real-world situations, like creating a water purification system to supply potable water in third world countries, or developing a deployable bridge to be used in a natural disaster.

The flexible first year offers you the opportunity to experience the many flavours of engineering before deciding on a specialisation prior to or during the start of second year.
INTEGRATED BE/ME

The integrated Bachelor of Engineering and Master of Engineering (BE/ME) is an exciting new addition to The University of Queensland’s Engineering programs. Recent surveys of UQ engineering students highlighted that many students would undertake an extended program, if it involved useful, advanced course content, practical placements in industry or research, and improved positioning in the international graduate market. We received similar feedback from our industry partners and this feedback played a vital role in shaping the new BE/ME program.

If you undertake the Integrated BE/ME program, you will enrol and follow the same course outline as other Bachelor of Engineering students for the first three years. In the second semester of the fourth year, you will take up an industry or research semester placement with industry partners or research institutions, either locally and internationally. The fifth year will be the capstone experience of the BE/ME degree and will involve challenging design and research projects.

The major objectives of the BE/ME are to produce graduates who:
- are globally competitive for graduate positions and research higher degrees
- have the depth to be technical leaders in their area of specialisation
- have the breadth and experience to lead multi-disciplinary teams.
These courses are designed to provide knowledge of the various disciplines and place students closer to the leading edge of technology. Industry needs graduates who can apply new technologies to existing and emerging industries. The Masters courses give the BE/ME graduate a clear and demonstrable advantage when applying for jobs that require advanced skills/capabilities.

The courses will be delivered in a diverse range of styles. The placement semester will put course content in context with industry/research relevant projects.

The timing of the placement adjacent to summer holidays adds flexibility meaning that many things are possible, including overseas placements or hybrid industry/research projects where you work in industry or at a research institute. Your interest and career ambitions will be the driving force behind what you do.

UQ Engineering has a proud history of innovation and leadership in engineering education, and this new BE/ME program will continue to position UQ engineers as industry leaders, both in Australia and internationally. Our existing industry partners have shown a great enthusiasm for this new program as a way of developing outstanding engineers.
The Bachelor of Engineering/Master of Engineering specialisations include:

- BE/ME Chemical
- BE/ME Chemical and Biological
- BE/ME Chemical and Environmental
- BE/ME Chemical and Materials
- BE/ME Chemical and Metallurgical
- BE/ME Electrical
- BE/ME Electrical and Biomedical
- BE/ME Electrical and Computer
- BE/ME Software.

*Students entering the Bachelor of Engineering in 2013 should have the option to select all engineering specialisations within the BE/ME.
CHEMICAL AND BIOLOGICAL

What is Chemical and Biological Engineering?
This program combines studies in chemical engineering with additional specialist study and project work in Bioengineering.

CHEMICAL

What is Chemical Engineering?
Chemical engineers invent, design, and manage products and processes that transform raw materials into valuable products using the latest knowledge of biology, chemistry and physics to ensure minimum loss of materials and consumption of energy. This value-adding must be safe, economical and environmentally sound. It is a rapidly changing profession with chemical engineers working at the cutting-edge of fields such as molecular biology, nano-materials, chemistry, physics, mathematics and information technology.

Chemical engineers design both products and the processes needed for their commercial-scale production. They also manage operation and optimisation of these processes to produce such products as petrol, plastics, instant coffee, pharmaceuticals and artificial blood.

Careers
Chemical engineering is one of the most mobile and diverse careers you can choose. Your skills will allow you to work in a wide range of industries, government departments and private consultancies.

You can work in environmental protection; risk management and safety; natural resource utilisation and the energy sector; chemical, petroleum and petrochemical industries; biochemical, biomedical and pharmaceuticals industries; computer-aided process and control engineering; advanced materials design and manufacture; minerals processing and related industries; and food processing and biotechnology.

Minors Available
A stream of courses in a complementary area. You can graduate with a BE (Chemical) with any minor or go on to the BE/ME.

- **Biological Engineering**: Focuses on biological processes and is required for entry into the BE/ME (Chemical and Biological).
- **Environmental Engineering**: Focuses environmental systems and is required for entry into the BE/ME (Chemical and Environmental).
- **Food Engineering**: Developed to give an edge in the food processing industry. You can graduate with BE (Chemical) or go on to BE/ME (Chemical).

CHEMICAL AND BIOLOGICAL

What is Chemical and Biological Engineering?
This program combines studies in chemical engineering with additional specialist study and project work in Bioengineering.

CHEMICAL AND BIOLOGICAL

What is Chemical and Biological Engineering?
This program combines studies in chemical engineering with additional specialist study and project work in Bioengineering.

Year 1

|--------------------|--|-------------------------------|--|-----------------------------|-------------------------------------|-----------|

Year 2

<table>
<thead>
<tr>
<th>Process Principles</th>
<th>Fluid and Particle Mechanics</th>
<th>Process Experimentation</th>
<th>Chemistry – Structure and Reactions</th>
<th>Physical and Surface Chemistry</th>
<th>Calculus and Linear Algebra II</th>
<th>Electives</th>
</tr>
</thead>
</table>

Year 3

<table>
<thead>
<tr>
<th>Heat and Mass Transfer</th>
<th>Chemical Thermodynamics</th>
<th>Process Systems Analysis</th>
<th>Unit Operations</th>
<th>Reaction Engineering</th>
<th>Process Modelling and Dynamics</th>
<th>Electives</th>
</tr>
</thead>
</table>

Year 4

Minors Available
A stream of courses in a complementary area. You can graduate with a BE (Chemical) with any minor or go on to the BE/ME.

- **Biological Engineering**: Focuses on biological processes and is required for entry into the BE/ME (Chemical and Biological).
- **Environmental Engineering**: Focuses environmental systems and is required for entry into the BE/ME (Chemical and Environmental).
- **Food Engineering**: Developed to give an edge in the food processing industry. You can graduate with BE (Chemical) or go on to BE/ME (Chemical).

Careers
You can find employment in a wide range of companies employing chemical engineers. Employment prospects are excellent, especially in environmental protection, management and safety; biochemical, biomedical and pharmaceuticals industries; advanced materials design and manufacture, including biomedical device manufacture; minerals processing and related industries; food processing; and product design and development. Graduates are actively sought by employers for design, operations, and management positions. With a shift from chemical to biological processes, there are many industrial research and development as well as academic positions in biological engineering. Many bioengineers progress to postgraduate studies.
CHEMICAL AND ENVIRONMENTAL ENGINEERING

What is Chemical and Environmental Engineering?
Chemical and Environmental engineers will be accredited chemical engineers, with additional technical skills in the areas of waste management and resource recovery, water treatment and sustainable energy systems. They will have the skills and knowledge required to implement cleaner production, and to rigorously assess the long-term impacts of proposed products, processes and developments. This includes an understanding of key global challenges, the causes of these problems and barriers to the uptake of technical solutions. As a Chemical and Environmental engineer, you will be able to apply, assess and communicate a wide range of approaches to developing sustainable systems, including indicators of sustainability and different methods of community consultation and engagement. You will have a solid grounding in modelling and in analytical measurement in laboratory and field/industrial applications, including basic sampling design and data analysis.

Careers
You will be equipped to work effectively across technical, research and strategic roles to respond to present and future challenges associated with sustainably meeting the needs of the national and global population. You may also work within government agencies, industry and consulting firms in strategic roles such as sustainability implementation. For example, Chemical and Environmental engineers they will assist companies implement cleaner production practices, and will be involved in adaptation and planning for future environmental challenges in both the public and private sector.

Year 1
- **Engineering Design**
- **Engineering Modelling and Problem Solving**
- **Calculus and Linear Algebra I**
- **Multivariate Calculus and Ordinary Differential Equations**
- **Engineering Thermodynamics**
- **Chemistry – Energetics and Reactivity**
- **Electives**

Year 2
- **Process Principles**
- **Fluid and Particle Mechanics**
- **Process Experimentation**
- **Chemistry – Structure and Reactions**
- **Physical and Surface Chemistry**
- **Calculus and Linear Algebra II**
- **Electives**

Year 3
- **Heat and Mass Transfer**
- **Chemical Thermodynamics**
- **Process Systems Analysis**
- **Unit Operations**
- **Reaction Engineering**
- **Process Modelling and Dynamics**
- **Electives**

Year 4 / Years 4 and 5
- **Environmental Risk Assessment**
- **Transport Phenomena**
- **Energy Systems in Sustainable Development**
- **Process and Control System Synthesis**
- **Chemical Engineering Placement**
- **Advanced Water Technology and Management**
- **Sustainable Management of Solid and Liquid Waste**
- **Sustainable Development in the Minerals Industry**
- **Systems Thinking for Sustainability**
- **Chemical Engineering ME Design Project**
- **Engineering Grand Challenges**

CHEMICAL AND MATERIALS ENGINEERING

What is Chemical and Materials Engineering?
The program combines studies in chemical engineering with additional specialist study in materials engineering. You will become a fully accredited chemical engineer with additional knowledge of materials engineering. Materials engineering is concerned with the selection, processing and development of materials to design and make products. Materials – metals, alloys, ceramics, polymers and composites – give manufactured products their functional and aesthetic qualities. Materials engineers apply their knowledge of materials behaviour to optimise processing and improve the properties of products. They are also involved in controlling the service behaviour of materials; improving the performance of machines and structures.

The dual major in Chemical and Materials Engineering provides you with the best of both worlds – an excellent broad education in chemical engineering combined with specialist skills in materials engineering.

Careers
As a fully qualified Chemical Engineer, you will have all the employment opportunities of a Chemical Engineer, as well as further possibilities as a Materials Engineer. Materials engineers are employed in the materials processing and manufacturing industries, including the automobile, whitegoods, steel, aluminium and polymer industries that create wealth and add value to Australia’s mineral and other resources. Materials engineers are responsible for contributing to advances such as the space shuttle and the jet aeroplane; the laptop computer and the iPod; artificial hips, contact lenses and the bionic ear; improved golf clubs and tennis rackets; and levitating trains. Employment can be found in biomedical, electronics, energy and heavy industries. Chemical and materials engineers are employed in positions in management, design, operations, research, and consulting in Australia and overseas.

Year 1
- **Engineering Design**
- **Engineering Modelling and Problem Solving**
- **Calculus and Linear Algebra I**
- **Multivariate Calculus and Ordinary Differential Equations**
- **Engineering Thermodynamics**
- **Chemistry – Energetics and Reactivity**
- **Electives**

Year 2
- **Process Principles**
- **Fluid and Particle Mechanics**
- **Process Experimentation**
- **Chemistry – Structure and Reactions**
- **Physical and Surface Chemistry**
- **Calculus and Linear Algebra II**
- **Principles of Biological Engineering**
- **Science and Engineering of Metals**

Year 3
- **Heat and Mass Transfer**
- **Chemical Thermodynamics**
- **Process Systems Analysis**
- **Unit Operations**
- **Reaction Engineering**
- **Process Modelling and Dynamics**
- **Polymers Engineering**
- **Materials Selection**

Year 4 / Years 4 and 5
- **Environmental Risk Assessment**
- **Transport Phenomena**
- **Process and Control System Synthesis**
- **Environmental Performance of Materials**
- **Advanced Manufacturing**
- **Biomaterials: Materials in Medicine**
- **Chemical Engineering Design Project**
- **Engineering Grand Challenges**
What is Chemical and Metallurgical Engineering?
This program combines studies in chemical engineering with additional specialist study and project work in metallurgical engineering.

Metallurgical engineers play a key role in ensuring the sustainability of our modern society. Almost everything in our material world, even our major energy sources, is derived from minerals or from recycled materials.

It is the role of the metallurgical engineer to develop, design and operate processes that transform these low value raw materials into useful, high value mineral and metal products.

If you are looking for an interesting career that offers variety, hands-on problem solving, major high-tech projects, high salaries with prospects for international travel, you should find out more about this option.

The dual major in Chemical and Metallurgical Engineering provides you with the best of both worlds – a broad education in chemical engineering combined with more specialist metallurgy courses.

Careers
You will find employment in a wide range of companies and employment prospects are excellent. Positions for metallurgical engineers are available in production operations, engineering design, consultancies, laboratories, marketing, finance and commerce, and in research and development. The industry provides generous, well-paid vacation work to enable you to obtain practical experience in the sector before you graduate, and scholarships to help pay tuition fees. This is a truly international profession with a choice of employment and lifestyle opportunities throughout Australia and overseas.

Year 1
Engineering Design
Engineering Modelling and Problem Solving
Calculus and Linear Algebra I
Multivariate Calculus and Ordinary Differential Equations
Engineering Thermodynamics
Chemistry – Energetics and Reactivity
Electives

Year 2
Process Principles
Fluid and Particle Mechanics
Process Experimentation
Chemistry – Structure and Reactions
Physical and Surface Chemistry
Calculus and Linear Algebra II
Physical and Chemical Processing of Materials
Elective

Year 3
Heat and Mass Transfer
Chemical Thermodynamics
Process Systems Analysis
Reaction Engineering
Process Modelling and Dynamics
Pyrometallurgy
Mineralogy and Comminution
Mineral Processing II

Year 4 / Years 4 and 5
Process and Control System Synthesis
Transport Phenomena
Rotation
Aqueous Solution Processing and Electrometallurgy
Chemical Engineering Placement
Advanced Metallurgy Project
Engineering Grand Challenges
Impact and Risk for Minerals Processing
Metallurgical Engineering Design Project

“I love the hands-on practicals in every course because it allows us to fully understand the concepts and the limitations of scientific ideas discussed in lectures.”

Kat Tattersall
Bachelor of Engineering (Chemical and Materials)
CIVIL

What is Civil Engineering?
Civil engineering is for people – providing for their needs by planning and constructing the environments in which they live. Civil engineers are experts in planning, design, construction and maintenance of the facilities that contribute to our modern way of life.

They engineer buildings, bridges, roads, harbours, dams, airports, coastal protection, water supply and public health, producing efficient facilities that are aesthetically pleasing and satisfy the needs of society.

Civil engineers understand the way in which natural phenomena behave, meeting both environmental and technical challenges relating to areas such as how water flows, how waves break, how rivers can be controlled, how rainfall and wind effects can be measured and how buildings of all kinds can resist loads. You can study in the areas of structural engineering, hydraulic engineering, transportation engineering, geomechanics, hydrology, construction, coastal engineering and economics.

Careers
Civil engineers mostly work in private industry, federal, state and local government, consulting engineering firms, construction companies, mining companies and research establishments in Australia and overseas.

Within the private sector, consultant civil engineers are engaged to plan, design, manage and supervise works. They provide expert services to clients, advising financially and technically and undertaking the planning, coordination and technology of projects, often from first concepts through to completion.

In the public sector, the state and federal government departments and authorities responsible for railways, roads, ports, airports, housing and construction, all employ civil engineers. City councils and regional shires/counties also need the services of civil engineers.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
</table>

CIVIL AND ENVIRONMENTAL

What is Civil and Environmental Engineering?
The Civil and Environmental Engineering specialisation is designed to equip qualified Civil Engineers with the environmental systems engineering skills necessary to design and build tomorrow’s integrated, multi-centred sustainable cities.

New technologies and engineering solutions are required in both the developed and developing world for global sustainable development. Advanced economies have begun to recognise the urgency of the problems and are developing new ‘sustainable infrastructure’ research initiatives.

The Civil and Environmental specialisation consists of the major in Civil Engineering, in common with all Civil Engineering programs, supplemented with a ‘spine’ of environmental systems engineering courses that equip you with the systems skills to approach complex, multidisciplinary problems.

Careers
In the coming decades the world will face immense challenges in sustainability providing food, water, energy and materials for its rapidly growing and urbanising population while minimising the impacts of the associated waste and pollution. Nations like Australia will have to re-engineer ageing and inappropriate infrastructure, industries and patterns of urbanisation.

Civil and Environmental Engineers will lead the designing and building of future sustainable cities and regions – this includes developing sustainable buildings and precincts, creating energy-efficient rapid transit systems and providing populations with water and energy security as well as solid waste solutions. Future cities and their supporting regions will require a systems approach to design, build and manage their complex, integrated forms.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
</table>
CIVIL AND GEOTEchnical

What is Civil and Geotechnical Engineering
The unprecedented infrastructure development in Queensland, and Australia as a whole, is generating huge demand for Civil Engineering graduates. This includes specialisation associated with civil engineering in Geomechanics, incorporating soil mechanics, rock mechanics and engineering geology.

The Civil and Geotechnical specialisation consists of the major in Civil Engineering, which is taken common with all civil engineering plans, supplemented with additional specialist study and project work in Geotechnical Engineering. This specialisation is designed to equip qualified civil engineers with the skills to approach complex, multidisciplinary problems concerning earth materials including roads, landslides, piled building foundations, excavations, spillways, tunnelling and mining.

The Civil and Geotechnical Engineering dual major is supported by a consortium of global companies. Students are taught by experts working in civil and geotechnical engineering and benefit from UQ’s close links with these companies.

Careers
There is a high demand from Civil and Geotechnical Engineering Consultants, Mining Companies, and Civil and Mining Contractors, and you can work in design, operation, management, research and consulting in Australia and overseas.

Year 1
- Engineering Design
- Earth Processes and Geological Materials for Engineers
- Engineering Mechanics: Statics and Dynamics
- Calculus and Linear Algebra I
- Engineering Modelling and Problem Solving
- Multivariate Calculus and Ordinary Differential Equations
- Electives

Year 2
- Environmental Issues, Monitoring and Assessment
- Structural Mechanics
- Traffic Flow Theory and Analysis
- Calculus and Linear Algebra II
- Analysis of Engineering and Scientific Data
- Fundamentals of Soil Mechanics
- Introduction to Structural Design
- Reinforced Concrete Structures and Concrete Technology

Year 3
- Fluid Mechanics for Civil Engineers
- Geotechnical Engineering
- Structural Analysis
- Mining Geomechanics
- Catchment Hydraulics
- Structural Design
- Transportation Systems Engineering
- Hydrogeology

Year 4
- Mine Geotechnical Engineering
- Geotechnical Investigation and Testing
- Civil Design
- Advanced Rock Mechanics
- Civil Engineering Management
ELECTRICAL

What is Electrical Engineering?
Electrical engineering is concerned with the design, construction, operation and maintenance of electronics and electrical energy infrastructure.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4 / Year 4 and 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Modelling and Problem Solving</td>
<td>Calculus and Linear Algebra I</td>
<td>Signals, Systems and Control</td>
<td>Engineering Grand Challenges Electives</td>
</tr>
<tr>
<td>Multivariate Calculus and Ordinary Differential Equations</td>
<td>Computer Systems Principles and Programming</td>
<td>Electrical Energy Conversion and Utilisation</td>
<td></td>
</tr>
<tr>
<td>Introduction to Electrical Systems</td>
<td>Circuits, Signals and Systems</td>
<td>Electronic Circuits</td>
<td></td>
</tr>
<tr>
<td>Introduction to Software Engineering</td>
<td>Team Project I</td>
<td>Fundamentals of Electromagnetic Fields and Waves</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Analysis of Ordinary Differential Equations</td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probability Models for Engineering and Science</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Careers
Electrical engineers typically work in one of the following fields:
- telecommunications
- signal and image processing
- robotics and intelligent systems
- computer systems engineering
- electric power generation
- transmission and distribution
- biomedical engineering
 - including biomedical imaging
 - and signal processing for biomedical applications.

Career opportunities are found in the telecommunications and microwave industry, mining and transport sector, power generation and transmission industries and in the government and defence sector. Many of our graduates establish their own companies quite early in their careers, or are working overseas.

ELECTRICAL AND BIOMEDICAL

What is Electrical and Biomedical Engineering?
This program combines studies in electrical engineering with additional specialist study and project work in bioengineering, New discoveries and developments in biology and medicine are occurring with greater frequency now than ever before. This has led to the rapid change and growth of biotechnology research and industry. Biomedical engineering bridges the gap between technology, medicine and biology. It integrates physical, chemical, mathematical, and computational sciences and engineering principles with the ultimate aim of improving healthcare through advances in technology.

The dual major in Electrical and Biomedical Engineering commences with a broad foundation of preparatory courses in engineering, mathematics, biology and physics. This is followed by more advanced coursework and laboratory training, combining engineering analysis and design techniques with biology and physiology of cells and organisms.

Careers
As a biomedical engineer, you may be involved in the design, construction and development of health and monitoring devices or computers, diagnostic systems (such as CT, MRI and ultrasound), and therapeutic systems (such as surgical lasers and tissue engineering). You could also work with models of physiological function (such as a virtual heart), and with prosthetics and implants (such as cardiac pacemakers, defibrillators and artificial organs). Employment opportunities include hospitals, biotechnology companies, medical equipment manufacturers, research institutes, and government health departments.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4 / Year 4 and 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Design</td>
<td>Introduction to Computer Systems Electromechanics and Electronics</td>
<td>Integrative Cell and Tissue Biology</td>
<td>Thesis Project Engineering Grand Challenges</td>
</tr>
<tr>
<td>Engineering Modelling and Problem Solving</td>
<td>Calculus and Linear Algebra I</td>
<td>Embedded Systems Design and Interfacing</td>
<td>Image Processing and Computer Vision</td>
</tr>
<tr>
<td>Multivariate Calculus and Ordinary Differential Equations</td>
<td>Computer Systems Principles and Programming</td>
<td>Signals, Systems and Control</td>
<td>Team Project II Medical and Industrial</td>
</tr>
<tr>
<td>Introduction to Electrical Systems</td>
<td>Circuits, Signals and Systems</td>
<td>Electronic Circuits</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>Introduction to Software Engineering</td>
<td>Team Project I</td>
<td>Fundamentals of Electromagnetic Fields and Waves</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>Elective</td>
<td>Analysis of Ordinary Differential Equations</td>
<td>Digital Signal Processing</td>
<td>Professional Practice and the</td>
</tr>
<tr>
<td></td>
<td>Probability Models for Engineering and Science</td>
<td></td>
<td>Business Environment</td>
</tr>
</tbody>
</table>
What is Electrical and Computer Engineering?

Computer engineering spans hardware, software and systems – how to build a computer based device, how to program that for advanced operations and how to connect to other devices to work together.

Computer engineers build devices which everybody can recognise as a computer e.g., iPad or PC, but electrical and computer engineers can also build ‘hidden’ or embedded computers which control complicated machinery, medical instruments, cars, white goods, robots, communication equipment and satellites.

You will graduate with knowledge in electrical engineering, computer engineering and information technology, in conjunction with skills of a professional engineer.

Careers

Electrical engineers with in-depth knowledge of computer systems are needed in virtually any industry where advanced electrical and electronic equipment is designed, upgraded or even maintained. Electrical and Computer engineers are qualified to work within the mainstream computer industry but also in most other areas of electrical engineering. Career opportunities exist with a range of employers, including multinational computer companies, state and federal government departments, consulting companies, the telecommunications industry, manufacturing and resource industries.

You may be employed as a designer of electronic and computer hardware, or system integrator building equipment requiring computer control. You can also work as a programmer, designing and implementing applications ranging from software for embedded microcontrollers, to the software used in information terminals.

Year 1
- Engineering Design
- Engineering Modelling and Problem Solving
- Calculus and Linear Algebra I
- Multivariate Calculus and Ordinary Differential Equations
- Introduction to Electrical Systems
- Introduction to Software Engineering
- Elective

Year 2
- Electromagnetism and Modern Physics
- Programming in the Large
- Introduction to Computer Systems
- Electromechanics and Electronics
- Calculus and Linear Algebra II
- Network and Operating Systems Principles
- Circuits, Signals and Systems
- Team Project
- Analysis of Ordinary Differential Equations
- Probability Models for Engineering and Science

Year 3
- Embedded Systems Design and Interfacing
- Signals, Systems and Control
- Electronic Circuits
- Digital System Design
- Fundamentals of Electromagnetic Fields and Waves
- Electives

Year 4 / Year 4 and 5
- Thesis Project
- Advanced Embedded Systems Engineering Grand Challenges
- Team Project II
- Professional Practice and the Business Environment
- Electives

“I love the extensive range of specialisations available within Electrical Engineering. My passions are in signal processing and control systems and I am looking forward to starting my graduate program with MIPAC who excel in both of these areas.”

Bianca Crow
Bachelor of Engineering (Electrical)
What is Mechanical Engineering?
One of the broadest areas of engineering activity, mechanical engineering is concerned with machinery, power and manufacturing methods. Mechanical engineers design and manufacture machinery and equipment for all branches of industry; design and operate power plants and concern themselves with the economical combustion of fuels, the conversion of heat energy into mechanical power and the use of that power to perform useful work.

You will study core courses in design, mathematics, modelling, computing, management and engineering science. Electives in later years will give you an opportunity to study in greater depth the fields of interest for individual career options. The principal topics in mechanical engineering are fluid mechanics, thermodynamics and heat transfer, solid mechanics, manufacturing, energy systems, dynamics and control.

Careers
Mechanical engineers are employed in diverse industries including the automotive, aerospace, environmental, medical, power generation and building industries to name a few. Our graduates work in research, design and development, testing and manufacturing, consulting firms, government agencies and educational institutions.

Employment opportunities in Australia and overseas range from very large mining, refining, construction and manufacturing companies to small companies in which you might be the only engineer. Some graduates even start their own companies soon after leaving university.

Year 1
- Engineering Design
- Engineering Modelling and Problem Solving
- Calculus and Linear Algebra I
- Multivariate Calculus and Ordinary Differential Equations
- Engineering Thermodynamics
- Introduction to Electrical Systems
- Engineering Mechanics: Statics and Dynamics
- Elective

Year 2
- Introduction to Electrical Engineering
- Calculus and Linear Algebra II
- Multivariate Calculus and Ordinary Differential Equations
- Engineering Thermodynamics
- Introduction to Engineering Design
- Dynamic Systems and Structures
- Fluid Mechanics
- Machine Element Design
- Elective

Year 3
- Analysis of Ordinary Differential Equations
- Mechanical and Aerospace Systems
- Design to Engineering Design
- Advanced Dynamics and Vibrations
- Finite Element Method and Fracture Mechanics
- Thermodynamics and Heat Transfer
- Fluid Mechanics
- Engineering Management and Communication
- Analysis of Engineering and Scientific Data

Year 4
- Introduction to Control Systems
- Engineering Thesis
- OR
- Professional Engineering Project
- OR
- Design course(s)
- Electives

What is Mechanical and Materials Engineering?
The program combines studies in mechanical engineering with additional specialist study in materials engineering. Materials engineering is concerned with the selection, processing and development of materials to design and make products. Materials — metals, alloys, ceramics, polymers and composites — give manufactured products their functional and aesthetic qualities. Materials engineers apply their knowledge of materials behaviour to optimise processing and improve the properties of products. They are also involved in controlling the service behaviour of materials; improving the performance of machines and structures.

The dual major in Mechanical and Materials Engineering provides you with the best of both worlds — an excellent broad education in mechanical engineering combined with specialist skills in materials engineering.

Careers
As a fully qualified Mechanical Engineer, you will have the same employment opportunities as any mechanical engineer with further possibilities as a materials engineer.

Materials engineers are employed in the materials processing and manufacturing industries, including the automobile, whitegoods, steel, aluminium and polymer industries that create wealth and add value to Australia's mineral and other resources. Materials engineers are employed in large multinational companies and small to medium enterprises, in research establishments, in public utilities and in consulting engineering firms.

Materials engineers are responsible for contributing to advances such as the space shuttle and the jet aeroplane; the laptop computer and the iPod; artificial hips, contact lenses and the bionic ear; improved golf clubs and tennis rackets; and levitating trains. Employment can be found in biomedical, electronics, energy and heavy industries.

Year 1
- Engineering Design
- Engineering Modelling and Problem Solving
- Calculus and Linear Algebra I
- Multivariate Calculus and Ordinary Differential Equations
- Engineering Thermodynamics
- Introduction to Electrical Systems
- Engineering Mechanics: Statics and Dynamics
- Elective

Year 2
- Introduction to Electrical Engineering
- Calculus and Algebra
- Structures and Materials
- Introduction to Engineering Design
- Machine Element Design
- Dynamics and Orbital Mechanics
- Fluid Mechanics
- Science and Engineering of Metals

Year 3
- ODEs
- Statistics
- Finite Element Methods, Fracture, Fatigue
- Thermodynamics and Heat Transfer
- Management
- Mechanical and Space Design
- Advanced Dynamics and Vibrations
- Fluid Dynamics
- Materials Selection

Year 4
- Thesis
- Introduction to Control
- Nano-materials
- OR
- Bio-materials
- Net Shape Manufacturing
- Aerospace Materials
- Corrosion and Electrochemistry
- Polymers
What is Mechanical and Aerospace Engineering?
This program combines studies in mechanical engineering with additional specialist study and project work in the aerospace and aviation industry.

Aerospace engineering is concerned with the design, manufacture and operation of aircraft, launch vehicles, satellites, spacecraft and ground support facilities. It is a particularly challenging discipline because of the need for light-weight but highly reliable aircraft and spacecraft. Cutting-edge technology and design are key in this field.

Aerospace engineering projects tend to be multidisciplinary in nature because of the scientific content of many of the payloads and the complex thermophysical aspects of hypervelocity atmospheric flight. All workers in this field must be adept at incorporating technology from outside their immediate specialty.

The Mechanical and Aerospace Engineering specialisation includes the same compulsory courses as the Mechanical Engineering specialisation. All students study aerospace propulsion, design and manufacturing and then specialise in either the aeronautical or space engineering stream to obtain the dual major. You can study topics such as flight mechanics, aerospace materials, space physics and astrophysics, hypersonic aerodynamics and computational fluid dynamics.

Careers
Because the degree program is based on the Mechanical Engineering program you will be fully qualified as a mechanical engineer and will have the same employment opportunities as mechanical engineers.

As a UQ Mechanical and Aerospace Engineering graduate you will not only have generic skills that give you an advantage in traditional mechanical engineering roles, as the discipline increasingly relies on high technology, but will also have the specialised training that enables you to apply engineering and scientific techniques to aerospace-based situations.

Year 1
- Engineering Design
- Engineering Modelling and Problem Solving
- Calculus and Linear Algebra I
- Multivariate Calculus and Ordinary Differential Equations
- Engineering Thermodynamics
- Introduction to Electrical Systems
- Engineering Mechanics: Statics and Dynamics

Year 2
- Introduction to Electrical Engineering
- Calculus and Linear Algebra II
- Introduction to Engineering Design
- Machine Element Design
- Dynamics and Orbital Mechanics
- Structures and Materials
- Fundamentals of Fluid Mechanics
- Engineering Analysis I

Year 3
- Engineering Analysis II
- Analysis of Ordinary Differential Equations
- Aerospace Design and Manufacturing
- Advanced Dynamics and Vibrations
- Finite Element Method and Fracture Mechanics
- Thermodynamics and Heat Transfer
- Fluid Mechanics
- Engineering Management and Communication
- Analysis of Engineering and Scientific Data

Year 4
- Introduction to Control Systems
- Aerospace Propulsion
- Engineering Thesis
- OR
- Professional Engineering Project
- OR
- Major Design Project
- Electives

“I’ve learnt a lot about the practical applications of engineering, made many professional contacts and also had the opportunity to experience research in hypersonics.”

Justin Beri
Bachelor of Engineering (Mechanical and Aerospace)
MECHATRONIC

What is Mechatronic Engineering?
Mechatronic engineering is the integration of precision mechanical engineering with electronics, computer systems, and advanced controls to design and construct products and processes. Mechatronic engineering is one of the newest branches of engineering with far-reaching applications in every sector of society.

The Mechatronic Engineering program provides a broad-based education in the basic principles of electrical, mechanical and computer engineering. In the first and second year, you will take core courses from the Mechanical and Electrical Engineering degree programs.

In the third and fourth year, you will be required to take four courses that are specific to the Mechatronics program along with electives such as engineering analysis and design, engineering mechanics, dynamics and automatic control, signals and communication, and electrical hardware and computer software. The remaining courses can be taken from any area of study on campus that will enhance your engineering degree (e.g., commerce, business studies, physics, mathematics or music) or they can be further courses from the Mechatronic Engineering program.

Career
Mechatronic engineers work in multidisciplinary design teams in industry, manufacturing, and research and development. They are often employed by product developers and manufacturers, by the mining industry, by the aerospace and defence sectors, and by the government and industry research groups. Biomedical and biotechnology companies are in increasing need of mechatronics graduates. Mechatronic engineers are needed wherever there is potential for improvement through the integration of computer and electrical hardware with mechanical systems. Opportunities also exist for you to form your own company early in your career.

“... I chose mechatronics engineering at UQ because I wanted to work somewhere where, at the end of a project, I could point to something and say “I made that.”
Kimberley Manning
Bachelor of Engineering (Mechatronics)
MINING

What is Mining Engineering?
Mining engineering is concerned with the extraction of valuable minerals from the ground for processing and utilisation. It covers all phases of mining operations, from exploration and discovery, through feasibility, development, production, processing and marketing, to final site rehabilitation. Mining engineers assess whether a new mineral discovery is of sufficient size and quality to warrant the costs of extraction, transportation and marketing. The mining industry is highly mechanised, highly automated and capital-intensive, and uses the most sophisticated technology available. Some mining engineers choose to specialise in engineering sciences, such as rock mechanics, mine planning, excavation engineering, ventilation or mining systems.

Careers
Employment prospects for UQ mining engineers are excellent with recent graduates commanding starting salaries in excess of $90,000. Most mining engineers are employed by mining companies, initially at the mines where minerals such as gold, silver, copper, lead, zinc, uranium ores, and coal are extracted. Some mining engineers choose to specialise in operations while others, such as technical specialists and senior managers move to the major cities where head offices tend to be located.

MINING AND GEOTECHNICAL

What is Mining and Geotechnical Engineering?
The unprecedented mining and infrastructure development in Queensland, and Australia as a whole, is generating huge demand for Mining Engineering graduates.

The Mining and Geotechnical Engineering major is supported by a consortium of global companies. You will be taught by experts working in mining and geotechnical engineering and benefit from UQ’s close links with these companies.

Careers
There is a high demand from Mining and Geotechnical Engineering Consultants, Mining Companies, and Civil and Mining Contractors, and you can work in design, operation, management, research and consulting in Australia and overseas.
SOFTWARE

What is Software Engineering?
Software engineering is the systematic approach to the development, operation, maintenance and retirement of software; the controlling element of computer-based systems. As society has become even more dependent on computers, one of the biggest challenges is the creation of new software necessary to make computers useful. Software engineering deals with the challenges associated with large-scale, high-quality software including size and complexity; cooperation between developers, clients and users; and evolution of software over time to maintain its value. Software engineers use principles of computer science, engineering, design, management, psychology, sociology and other disciplines to design and manage large software systems.

You will complete team projects in second and third year and an individual project in fourth year. Employers strongly support this UQ approach to learning.

Careers
Software engineers work in large multinational companies, state and federal government departments and agencies, as well as small, specialised consulting companies. Some of our students have started their own companies. Defence, transport, games and security are just a few of the areas where software engineers are currently being recruited. Career opportunities for software engineers are excellent and Australian graduates are well-accepted internationally and able to work overseas and expand their expertise.

Year 1
- Engineering Design
- Engineering Modelling and Problem Solving
- Calculus and Linear Algebra I
- Multivariate Calculus and Ordinary Differential Equations
- Introduction to Electrical Systems
- Introduction to Software Engineering
- Elective

Year 2
- Introduction to Computer Systems Programming in the Large
- Algorithms and Data Structures
- Computer Systems Principles and Programming
- Design Computing Studio 2 - Testing and Evaluation
- Probability Models and Data Analysis for Engineering

Year 3
- The Software Process
- Human-Computer Interaction
- Team Project I
- Electives

Year 4
- Thesis Project
- Professional Development
- Professional Engineering Project
- Team Project II
- Electives

“Software Engineering is becoming more and more the foundation of modern life and business, so there are always new and exciting developments to work on that can affect the lives of millions.”

Alan Alpert
Bachelor of Engineering (Software)
Once you are enrolled at UQ, you may decide to undertake a Diploma in either Music Performance, Languages, or Global Issues at the same time as you complete your bachelor degree.

CONCURRENT DIPLOMAS

At UQ, you can now study one of three undergraduate diplomas concurrently with your bachelor degree. You may choose to undertake this over an accelerated period, or spread the load across the duration of your degree.

MUSIC PERFORMANCE
If you love music, this is the diploma for you — no matter what your main academic interest. You can choose between Music Studies and Ensemble in which you can practise performance skills in an orchestral setting, as well as develop other musical techniques and knowledge; or Popular Music and Music Technology which focuses on the technologies of performance, recording, and distribution of popular music’s different genres.

LANGUAGES
If you are keen to learn a new language, whether for personal interest or to enhance your career prospects in the global economy, you can study the Diploma in Languages. This diploma will suit you if you studied a language at high school and want to maintain your proficiency. But it will also suit you if you have never studied a foreign language: you don’t need any prior experience. The diploma is available in French, German, Indonesian, Japanese, Korean, Russian and Spanish.

GLOBAL ISSUES
The Diploma in Global Issues will appeal to you if you wish to pursue a career in an area where having a global perspective on the environment, economics, politics, and social change will be of advantage. In this program, you will learn how individuals, societies and countries are all interconnected. One exciting feature of this program is the opportunity to make the most of UQ’s extensive international connections through study at one of our partner universities.

How to enrol in a concurrent diploma
If you are interested in the Diploma in Music Performance or the Diploma in Languages, you can apply for these programs directly to UQ once you have been offered a place at UQ through QTAC.

If the Diploma in Global Issues is your area of interest, you will need to complete one year (16 units) of undergraduate studies before applying.

To find out more about undergraduate diplomas, please contact the UQ Admissions Team:

UG Admissions
www.uq.edu.au/study
Email admissionsenquiries@admin.uq.edu.au
Phone (07) 3365 2203
A dual degree program gives you the flexibility to study two areas of interest at once. The additional knowledge and skills gained give you a competitive edge in the workplace and significantly broaden your career possibilities. Dual programs can also be completed more quickly than two separate degrees.

Applicants for UQ dual programs must satisfy prerequisites and entry score requirements for both programs. You apply through normal QTAC application procedures.

Once you have been offered a place in a program, you may then apply to the faculty for permission to enrol in the two programs making up the dual degree program. The Enrolment Pack sent with an offer provides details about this process.

In some programs you can choose to undertake additional courses in some years to finish the program in five rather than five and a half years.

Engineering/Arts (BE/BA)
Program duration: 5.5 years
This program allows combinations of the humanities and engineering. It is an excellent plan if you wish to combine languages, cultural studies and the behavioural sciences.

Engineering/Biotechnology (BE/BBiotech)
Program duration: 5.5 years
By combining these degrees you will be provided with an ideal combination of skills for the production side of modern biotechnology. This program is available with the BE (Chemical Engineering) and BBiotech (Process Technology) only.

Engineering/Business Management (BE/BBusMan)
Program duration: 5.5 years
By combining these two areas of study, you will attain not only a high level of engineering proficiency but also gain additional valuable knowledge and skills to assist in effective and successful business management.

Engineering/Commerce (BE/BCom)
Program duration: 5.5 years
By combining these two areas of study in a dual degree, you will be given a focused background in commerce, along with specific practical and theoretical understandings relevant to your chosen field in engineering.

Engineering/Economics (BE/BEcon)
Program duration: 5.5 years
An excellent combination if you want an option of working in business or government interfacing with engineering and technology-based industry.

Engineering/Information Technology (BE/BInfTech)
Program duration: 5.5 years
Ideal if you wish to combine the theory and practice of modern computing with another field in engineering. This program is available with some dual and extended majors, and all single majors except Software Engineering.

Engineering/Science (BE/BSc)
Program duration: 5.5 years
Engineering and science are complementary areas of study. Engineering considers the practical and useful applications of scientific knowledge. Science is about understanding the natural and physical world. This dual degree provides you with an extended science base for engineering if you are interested in knowing more about science and mathematics underpinning engineering. This program is available with all engineering majors. Popular fields of study in the BSc for dual degree students include mathematics, physics and chemistry.

Note: All dual programs are available with all single majors unless otherwise indicated. Engineering dual or extended majors are only available within the Bachelor of Engineering or Bachelor of Engineering/Bachelor of Science or (for some majors) with the Bachelor of Engineering/Bachelor of Information Technology.
UQ is committed to enabling all students, regardless of background or financial circumstances – to realise their full potential. That’s why we offer a wide range of scholarships to help you fund your tertiary education.

Scholarships at UQ are awarded for academic excellence, for research purposes, to help you if you have financial difficulty, to assist elite athletes, and to help with the costs of overseas study. You can apply for many of them before you start studying.

Scholarships are not only funded by the University, but also generously supported by our industry partners, private donors and the government. See www.uq.edu.au/study/scholarships for full details.

Engineering scholarships

There are many scholarships across a range of disciplines available to you as a Bachelor of Engineering student. Some are specific to those about to commence their degree, while others are available to students who have completed at least one year of study, and can lead to employment upon graduation. In addition to UQ Excellence and UQ Merit scholarships (see Academic Scholarships), UQ Engineering’s strong industry partnerships offer scholarships specifically for engineering students. Individual scholarships worth up to $12,000 per year are available.

For further details on all scholarships available visit www.engineering.uq.edu.au/scholarships

Academic scholarships

UQ wants to encourage and attract high-achieving school leavers who also demonstrate the potential to be future leaders, and so has a generous academic scholarship program in place. Selection for the three scholarships – UQ Vice-Chancellor’s, UQ Excellence, UQ Merit – is based on your academic achievement in Year 12, your demonstrated leadership potential, and other achievements.

Equity scholarships

UQ has a strong commitment to providing support for you if you are financially disadvantaged and offers a range of equity scholarships to Commonwealth-supported students, including the UQ-Link Access Scholarships and Indigenous Access Scholarships (IAS).

For more information, go to www.uq.edu.au/study/scholarships, click on Undergraduate Students, and select Equity.

Scholarships for Indigenous students

As an Indigenous student you have many scholarships from which to choose, including the Indigenous Access Scholarship (IAS), Indigenous Youth Leadership program, and the Pearl Duncan Teaching Scholarship. Go to www.uq.edu.au/study/scholarships, click on Undergraduate Students, and select Indigenous students for full details.

International opportunities

If you complete part of your studies as an exchange student through UQ Abroad, you may be eligible for a UQ Student Exchange Scholarship. Jubilee Scholarships as well as the Australian University Mobility in Asia and the Pacific Program (UMAP) are also available.

Our industry partners and private donors – often who are UQ engineering graduates themselves – all contribute to helping the next generation of engineers. UQ Engineering would like to thank the following companies for their support:
RWH HAWKEN SCHOLARS

The RWH Hawken Scholars program emulates Professor Hawken’s vision of the complete engineer needing a combination of wide-ranging experience and cultural insights coupled with academic excellence.

Hawken Scholars are academically gifted students with a passion for learning, who have displayed leadership qualities within school and the community, and aspire to take their degree to the highest possible level.

As a Hawken Scholar you will be continuing a proud tradition of excellence and achievement at UQ, following in the footsteps of other Hawken Scholars who have gone before you.

The Hawken Scholars program is a great way to make the most of your university experience. You will be introduced to industry, community and corporate networks, and have the opportunity to further develop your skills and knowledge through priority access to research, international exchange and industry sponsored opportunities.

RWH Hawken Scholars are supported and encouraged to pursue:
- summer Research scholarships
- travel scholarships for overseas exchange studies
- valuable industry sponsored scholarships
- networking opportunities with industry and alumni.

The program also enables access to exclusive industry and research events including:
- annual leadership function
- industry networking colloquium
- ambassadorial roles
- student mentoring opportunities

Program requirements
RWH Hawken Scholars are required to maintain a GPA of 6.0 or higher throughout their degree and complete all standard requirements of the undergraduate program.

How to apply
High-achieving students who enrol in an Engineering, Architecture, Multimedia Design, or Information Technology degree and receive a UQ Vice-Chancellor’s or UQ Excellence Scholarship automatically become a Hawken Scholar. Students must apply for a UQ Excellence Scholarship through the Undergraduate Scholarships and Prizes Office at www.uq.edu.au/study/scholarships. Students who then enrol in one of the above undergraduate degrees will be invited to enter the RWH Hawken Scholars program.

More information:
www.eait.uq.edu.au/hawken-scholars

ROGER WILLIAM HERCULES HAWKEN (1878-1947) was the first Professor and lecturer in Civil Engineering at The University of Queensland. Professor Hawken played a leading role in the formation of Engineers Australia in 1919 and worked on many major projects including Brisbane’s Story Bridge. He was an inspiring member of The University of Queensland academic staff for over 35 years.
Admission requirements
To gain admission to undergraduate programs, you must satisfy prerequisites and have a sufficient entry score (OP/I/B/Rank).
But there are alternative pathways for entry if you do not meet the requirements, and you can upgrade your score. See Alternative entry or improving an entry score (upgrading) in the next column.

Prerequisites
Subject prerequisites are the Queensland Year 12 subjects required for individual programs. You may also gain admission to programs with subject equivalents from interstate or overseas schooling, external senior studies, or tertiary studies. Some programs have additional prerequisites, e.g., the Graduate Medicine and Health Sciences Admission Test (UMAT).

Entry scores
Entry scores include Overall Positions (OP) and ranks. Eligible applicants are selected for admission to a program in order of merit based on entry scores. Those with the highest entry score are selected first, and so on until the program quota is filled. The minimum OP or rank required for entry varies from year to year and is determined once applications have been processed and places allocated. While it is difficult to predict exactly what OP or rank will be needed for entry to a program, the previous year’s cut-off points can be used as a guide.
Current Queensland Year 12 students receive an OP on the basis of their overall achievement at school in comparison with other students. OPs are determined by the Queensland Studies Authority and range from 1 to 25, with 1 being the highest. OPs are used as a guide to determine the previous year’s cut-off points for an OP or OP-ineligible Year 12 English (or interstate equivalent) or by other means, as outlined in the Entry Options booklet available from UQ Admissions.

Alternative entry
If you did not complete Year 12, did not achieve a high enough entry score for your preferred program, or are a mature-aged applicant, there are alternative entry pathways to UQ. Contact UQ Admissions for advice on these alternatives.

Improving an entry score (upgrading)
If you are not offered a place in your preferred program and want to improve your entry score or meet subject prerequisites, you can accept an offer in a lower preference program and try to improve your entry score or meet program prerequisites. This process is called upgrading.
It involves the allocation of a new entry rank that, depending on factors such as academic performance in the lower preference program and your history of previous studies, is potentially higher than your previous rank.
For information about other ways to improve your entry score, please contact UQ Admissions.

Special entry programs
If you are of Australian Aboriginal and/or Torres Strait Islander descent, or have suffered financial hardship or severe disadvantage beyond your control that has affected previously satisfactory results, you may be eligible for special entry to UQ. Contact UQ Admissions for more information.

UQ’s Bonus Rank Scheme gives current Queensland Year 12 high school students bonus points towards their entry score for completing certain approved subjects. Contact UQ Admissions for more information.
Programs for high school students
UQ’s Enhanced Studies Program (ESP) provides high-achieving secondary school students with an opportunity to extend their studies in an area of interest and to “test drive” university life. Students accepted into the program can study one UQ course (subject) during Semester One of Year 12. ESP students who successfully complete the program will be eligible to receive one bonus point towards their university entrance rank through UQ’s Bonus Scheme. Most ESP students who later enrol in a relevant UQ degree also receive credit for their completed course. ESP study counts towards your Queensland Certificate of Education (QCE). For more information, visit www.uq.edu.au/guidance/esp

How to apply
You can apply for admission to undergraduate programs at UQ through the Queensland Tertiary Admissions Centre (QTAC). The QTAC Guide provides essential information on the application process and explains the entry requirements for all programs offered through QTAC. Free copies are given to all current Queensland Year 12 students and some interstate schools. You can also buy a copy from newsagents or through QTAC.
For 2013 programs, the deadline for on-time applications is 28 September 2012. Contact QTAC for more information.

Current Year 12 students
– lodge an application online through QTAC’s Twelve to Tertiary (TTT) Web application service at www.qtac.edu.au
International students studying Year 12 in Australia
– visit www.uq.edu.au/international/ausyear12 for more information on application procedures and entry requirements
Other prospective students
– lodge an online application using QTAC’s Apply by Web service at www.qtac.edu.au

Enrolment
Once you have been offered a place in a UQ program, you can formally accept the offer by lodging a response with QTAC. You can then enrol at UQ by using the UQ link from QTAC’s Current Applicant online service.

QTAC
www.qtac.edu.au
Phone 1300 467 822
UQ Admissions
www.uq.edu.au/study
Email admissionsenquiries@admin.uq.edu.au
Phone (07) 3365 2203
International Admissions Section
www.uq.edu.au/international
Queensland Year 12 students
Phone (07) 3346 7376
Interstate Year 12 students
Phone 1800 671 980

English language requirements
If you are from a non-English-speaking background, you must provide evidence of English proficiency. This may be achieved through a pass in Queensland Year 12 English (or interstate equivalent) or by other means, as outlined in the Entry Options booklet available from UQ Admissions.
Fees and charges
When you study at university, you will have to pay fees for each course in which you enrol. Most undergraduate places at UQ are funded partly by the federal government (Commonwealth supported) and partly by you, and the amount you pay depends on the band level of your course. National priority courses (Mathematics, Science, Statistics) attract the lowest charges.

You are eligible for Commonwealth supported (CSP) funding if you are an Australian or New Zealand citizen, or an Australian permanent resident. International students must pay full tuition fees.

At UQ, fees are charged each enrolment period (e.g., semester or year) according to the courses you undertake, not the program in which you enrol and, because charges are levied according to your exact enrolment, it is not possible to publish a fixed annual fee.

Fee Calculator
To help you estimate your fees for an enrolment period, UQ has developed an online Fee Calculator, available on the Courses and Programs website.

The Fee Calculator shows individual course fees and allows you to add them to a list to calculate the overall fee for your enrolment. Before you enrol, Academic Advisors can help you develop a study plan.

Fees information
www.uq.edu.au/study

Fee calculator
www.uq.edu.au/study (see UQ Toolkit)

Living costs
As a university student, you will also need to consider other costs of living, especially if you are living away from home for the first time. These include accommodation, books and study requirements, transport, and parking. Fortunately, a wide range of assistance is available.

UQU, the Student Union, has a secondhand bookshop at St Lucia, and provides many low-cost entertainment activities. UQ’s Student Services offer help with accommodation and finding a job.

And the Australian Government provides financial support for low-income earners, as well as fee repayment options for all students.

University of Queensland Union
www.uqu.uq.edu.au

UQ Student Services
www.uq.edu.au/student-services

Financial assistance
Centrelink student services
The Australian Government’s Centrelink provides three income-support payments for Australian tertiary students: Youth Allowance, Austudy, and Abstudy. You can apply for these payments at any Centrelink Customer Service Centre.

Other schemes include:
- an interest-free advance loan for students, where you are paid part of your allowance as a lump-sum advance
- the Pensioner Education Supplement (PES), which is a payment to certain categories of pensioners commencing study
- the Health Care Card, which enables Commonwealth health concessions, such as low-cost pharmaceuticals, under the Pharmaceutical Benefits Scheme (PBS).

Centrelink
www.centrelink.gov.au

Youth and student services
Phone 13 24 90

Abstudy
Phone 13 23 17

HECS-HELP
If you are a domestic student in a Commonwealth supported place, you may be eligible to receive HECS-HELP.

HECS-HELP allows Australian citizens or permanent humanitarian visa holders in Australia to defer all or part of their student contribution amounts for repayment when their incomes meet a specific threshold. This means that you do not start repaying your HECS debt until you earn a certain income level (currently $47,195 per tax year). It is then taken out of your pay as additional tax.

Each enrolment period, if you pay “up-front”, i.e. at the time of enrolment, you will receive a 10 percent discount on your fees. (Please note that New Zealand citizens or Australian permanent residents without a humanitarian visa must pay up-front and do not receive a discount.)

HECS-HELP information
www.studyassist.gov.au

Scholarships
See pages 26-27
Bachelor degree
A qualification awarded for the first level of study undertaken at university, generally requiring three to five years of study, depending on the bachelor degree studied.

Course (formerly known as subject)
A component of study within a program, similar to a subject at school. Full-time students usually study four courses per semester.

Dual program
A combination of two UQ degree programs undertaken at the same time. These are sometimes called dual degrees, parallel degrees, combined degrees, or double degrees.

Elective
A course that you can choose to study from a set of options. Some UQ programs allow electives from outside your main area of study.

Entry scores
Undergraduate students are given an entry score based on high school studies or other post-secondary studies. If you complete high school studies in Queensland you are assigned an Overall Position (OP). Year 12 students in other Australian states are assigned an Interstate Transfer Index (ITI). All other students are assigned a rank. Once you have completed a full year of study at UQ, your OP or ITI is converted to a rank based on Grade Point Average (GPA).

Grade point average (GPA)
The average grade of your results, weighted by the unit value of each course. GPA is determined on a semester basis and ranges from 1 (lowest) to 7 (highest).

Faculty
A major organisational unit within UQ, with responsibility for academic programs, e.g., Faculty of Arts. Faculties may have a number of sub-faculty academic units called Schools, e.g., School of ... The head of a faculty is called an Executive Dean.

Honours
If you are enrolled in a three-year degree, you must undertake additional study to be considered for honours. For four- or five-year bachelor degrees, honours is awarded based on academic performance during the program.

International student
A student who is not an Australian citizen or permanent resident, nor a New Zealand citizen, and is enrolled or proposes to enrol at an institution in Australia. Temporary residents of Australia are also classified as international students.

Major/Extended/Dual Major
A major or extended major is an area of specialised study within a program, for example, chemistry. A major, extended major, or dual major may be a formal requirement in a program.

Minor
A small group of courses in a discipline. A minor is worth approximately half the value of a major.

Overall Position (OP)
Overall Positions, or OPs, provide a State-wide rank order of students (on a 1 to 25 scale, 1 being the highest) based on your achievement in Authority subjects studied for the Queensland Senior Certificate. Your OP shows how well you have performed in your senior studies when compared with the performances of all other OP-eligible students in Queensland.

Postgraduate programs
Programs studied after graduating from undergraduate degrees which include graduate certificates, graduate diplomas, masters, and doctorates.

Program (formerly known as course)
A sequence of study involving enrolment, study and graduation, normally awarded with a qualification such as a bachelor degree, graduate diploma, or certificate.

Program code
A unique identifying number assigned by the University to a program.

QTAC
The Queensland Tertiary Admissions Centre (QTAC), the central admissions body for all Queensland undergraduate programs.

Semester
The University teaching year is divided into three semesters: Semester 1, Semester 2, and Summer Semester. Most programs only require enrolment in Semesters 1 and 2 each year.

Study Abroad
A program where students enrolled at an overseas university study at UQ for one or two semesters as part of their home university degrees.

Undergraduate programs
Usually refers to first-time university programs including diplomas and bachelor degrees.

Unit
The value of a course (#). Most courses at UQ are worth two units but some are higher.

UQ Terminology
www.uq.edu.au/study (see UQ Toolkit)
You are an International student if you are a:
– Temporary Resident (visa status) of Australia
– Permanent Resident (visa status) of New Zealand, or
– Resident or Citizen of any other country.

Eligibility for UQ study
For admission into undergraduate programs at UQ, you must have:
– completed recognised upper secondary or equivalent Year 12 studies to the required standard
– satisfied individual program requirements (e.g., specific subject prerequisites, auditions or interviews)
– satisfied English language requirements. If you do not meet these criteria, you might consider taking the foundation year bridging course offered by International Education Services (IES) or English language training offered by the Institute of Continuing and TESOL Education (ICTE).

Study Abroad and exchange
If you are an international student currently studying overseas at an accredited university, you can study at UQ for one or two semesters as part of the Study Abroad program. If another university has an exchange agreement with UQ, you can study at UQ as an exchange student for one or two semesters.

Expenses
When you apply for a student visa, the Department of Immigration and Citizenship (DIAC) may ask you for evidence that you have sufficient funds to complete your studies. Expenses to be considered include visa and medical (pre-departure) fees, tuition fees (for full degree or study abroad fees), general living expenses (around $18,000 - $22,000 a year), return airfares, and Overseas Student Health Cover (OSHC).

More than 11,000 international students from over 100 countries currently call UQ home.

Services for international students
International Student Advisors can help you quickly settle into life as a UQ student. These include collecting you from the airport, helping you find temporary accommodation, organising your orientation, and scheduling your academic preparation sessions. They can also answer your questions about health services, family matters, schooling or childcare, social events, and cultural or religious organisations.

More information
www.uq.edu.au/international-guide

Fees and charges
Fee-paying students pay tuition fees based on the courses they undertake, regardless of the program in which they enrol.

Fee information
www.uq.edu.au/international/fees
Fee calculator
www.uq.edu.au/study/feecalculator

Applying to UQ
See the 2013 UQ Guide: International Undergraduate students at www.uq.edu.au/international

Contact details
International Recruitment Manager
Email (online enquiry form)
www.uq.edu.au/international/enquiry
Phone +61 3 8676 7004 (outside Australia) 1800 671 980 (within Australia)
<table>
<thead>
<tr>
<th>QTAC CODE</th>
<th>BACHELOR DEGREE IN</th>
<th>DURATION (YEARS)</th>
<th>DELIVERY MODE</th>
<th>LOCATION</th>
<th>QLD 2012 OF</th>
<th>2012 INTERSTATE INDEX</th>
<th>PREREQUISITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>717001</td>
<td>Engineering</td>
<td>4</td>
<td>Internal</td>
<td>St Lucia</td>
<td>5</td>
<td>92</td>
<td>92.00 Old Year 12 or equivalent; English, Maths B; plus Chemistry or Physics</td>
</tr>
<tr>
<td>717001</td>
<td>Engineering/Arts</td>
<td>5.5</td>
<td>Internal</td>
<td>St Lucia</td>
<td>5</td>
<td>92</td>
<td>92.00 Old Year 12 or equivalent; English, Maths B; plus Chemistry or Physics</td>
</tr>
<tr>
<td>717001</td>
<td>Engineering/Biotechnology</td>
<td>5.5</td>
<td>Internal</td>
<td>St Lucia</td>
<td>5</td>
<td>92</td>
<td>92.00 Old Year 12 or equivalent; English, Maths B; plus Chemistry or Physics</td>
</tr>
<tr>
<td>717301</td>
<td>Engineering/Business Management</td>
<td>5.5</td>
<td>Internal</td>
<td>St Lucia</td>
<td>5</td>
<td>92</td>
<td>92.00 Old Year 12 or equivalent; English, Maths B; plus Chemistry or Physics</td>
</tr>
<tr>
<td>717201</td>
<td>Engineering/Commerce</td>
<td>5.5</td>
<td>Internal</td>
<td>St Lucia</td>
<td>5</td>
<td>92</td>
<td>92.00 Old Year 12 or equivalent; English, Maths B; plus Chemistry or Physics</td>
</tr>
<tr>
<td>717001</td>
<td>Engineering/Economics</td>
<td>5.5</td>
<td>Internal</td>
<td>St Lucia</td>
<td>5</td>
<td>92</td>
<td>92.00 Old Year 12 or equivalent; English, Maths B; plus Chemistry or Physics</td>
</tr>
<tr>
<td>717001</td>
<td>Engineering/Information Technology</td>
<td>5.5</td>
<td>Internal</td>
<td>St Lucia</td>
<td>5</td>
<td>92</td>
<td>92.00 Old Year 12 or equivalent; English, Maths B; plus Chemistry or Physics</td>
</tr>
<tr>
<td>717101</td>
<td>Engineering/Science</td>
<td>5</td>
<td>Internal</td>
<td>St Lucia</td>
<td>5</td>
<td>92</td>
<td>92.00 Old Year 12 or equivalent; English, Maths B; plus Chemistry or Physics</td>
</tr>
</tbody>
</table>

1 - Commonwealth Supported Place
UQ CAMPUSES

UQ’s campuses are renowned as being among the most beautiful and well-equipped in Australia.

UQ ST LUCIA
Situated on the Brisbane River just seven kilometres from the central business district, UQ St Lucia is one of Australia’s most attractive campuses. With its striking sandstone buildings and beautiful parklands, it is the ideal setting for both study and recreation. You can find just about everything you need on-site, including excellent sporting venues, shops and cafes.

UQ GATTON
UQ Gatton delivers excellence in agricultural and natural resource sciences in a relaxed, friendly atmosphere. Just over an hour’s drive west of Brisbane, the campus offers a unique blend of recreational amenities, support services, modern teaching facilities, state-of-the-art laboratories and historic buildings, along with the $100 million School of Veterinary Science.

UQ IPSWICH
UQ Ipswich provides a high-quality teaching and learning environment in a supportive, friendly campus community. Students benefit from small classes held in purpose-designed teaching spaces and enjoy a range of support, amenities and recreational services, including a bookshop, cafes, sports court, oval and gym. UQ Ipswich is also home to UQ College, a new academic preparation centre.

UQ HERSTON
Herston is UQ’s core clinical health teaching and research site. The campus is close to Brisbane city and is located alongside the Royal Brisbane and Women’s Hospital and the Royal Children’s Hospital. This co-location demonstrates UQ’s commitment to working closely with health professionals and researchers to deliver innovative and contemporary health education programs.
Faculty of Engineering, Architecture and Information Technology
Hawken Engineering Building
The University of Queensland
Brisbane QLD 4072
AUSTRALIA
Phone +61 7 3365 4777
Fax +61 7 3365 4444
Email admin@eait.uq.edu.au
Internet www.eait.uq.edu.au

UQ Admissions
JD Story Building
The University of Queensland
Brisbane Qld 4072
AUSTRALIA
Phone +61 7 3365 2203
Fax +61 7 3365 2061
Email AdmissionsEnquiries@admin.uq.edu.au
Internet www.uq.edu.au/study

UQ International Admissions
JD Story Building
The University of Queensland
Brisbane Qld 4072
AUSTRALIA
Phone +61 7 3365 7941/ 1800 671 980
Fax +61 7 3365 1794
Email study@uq.edu.au
Internet www.uq.edu.au/international

QTAC
PO Box 1331
Level 2, 33 Park Road, Milton
Brisbane Qld 4064
AUSTRALIA
Phone +61 7 3365 7041/ 1300 467 822
Fax +61 7 3367 1164
Email qzac@qtac.edu.au
Internet www.qtac.edu.au

Undergraduate Scholarships and Prizes Office
Phone +61 7 3365 7113
Fax +61 7 3365 7559
Email ugsscholarships@uq.edu.au
Internet www.uq.edu.au/study/scholarships

Fees and Commonwealth Scholarships
See www.uq.edu.au/scholarships for the latest information.

Disability Unit
Student Services
Building 21D
The University of Queensland
Brisbane Qld 4072
AUSTRALIA
Phone +61 7 3365 1704
Fax +61 7 3365 1702
Email ss@uq.edu.au
Internet www.uq.edu.au/student-services/Disability

If you have a disability, please contact a Disability Advisor in Student Services at the start of semester to learn about the services and alternative academic arrangements available to you as a UQ student.

UQ publications
UQ Admissions holds several publications that can help you find out more about UQ programs, campuses, student services, admissions procedures and fees:
- UQ Guide: Australian Undergraduate Students
- UQ Guide: International Undergraduate Students
- UQ Guide: Australian Postgraduate Students

Campus tours
If you would like to experience UQ through a hosted campus tour, please contact the UQ School Liaison team (details below). Campus tours of UQ Ipswich and UQ Gatton are available all year round. UQ St Lucia tours are provided only during the Queensland school holidays, but you can request a self-guided discovery tour map if you wish to explore the campus yourself at any other time.

Phone +61 7 3346 9649
Email school liaisons@uq.edu.au
Internet www.uq.edu.au/schools

In the event of any conflict arising from information contained in this publication, the material approved by The University of Queensland Senate shall prevail.

CRICOS Provider Number 00025B

KEY DATES

Tertiary Studies Expo (TSXPO)
RNA Showgrounds
Saturday and Sunday, July 21-22, 2012

UQ Open Day
UQ St Lucia campus
Sunday, August 5, 2012
UQ Ipswich campus
Wednesday, August 8, 2012
UQ Gatton campus
Sunday, August 19, 2012

QTAC closing date
For on-time applications
Friday, September 28, 2012

Semester 1, 2013
Classes commence
Monday, February 25, 2013